Arctic Monitoring and Assessment Programme

Arctic Monitoring and Assessment Programme (AMAP)

Workshop at IIASA 19-20 May 2014

Lars-Otto Reiersen AMAP Secretariat,

Arctic Monitoring and Assessment Programme

Thawing of the Cold war

Arctic Monitoring and Assessment Programme

Arctic Monitoring and Assessment Programme

Permanent Participants (6 Arctic Indigenous Orgs):

- Aleut International Association
- Arctic Athabaskan Council
- Gwich'in Council International
- Inuit Circumpolar Council
- Saami Council
- Russian Arctic Indigenous Peoples of the North (RAIPON)

Arctic Monitoring and Assessment Programme

AMAPinitiated in 1991 to monitor and assess levels, trends and effects on Arctic ecosystems and humans:

Pollutants – Persistent Organics (POPs), heavy metals, radionuclides, petroleum hydrocarbons & acidification;

Climate change, incl. UV, ozone, black carbon, methane & ocean acidification;

Analyzing samples from: air, water, snow, ice, sediments, plankton, invertebrates, fish, birds, mammals & humans;

Perform integrated assessments of several drivers.

Provide science based policy related Actions

Arctic Monitoring and Assessment Programme AMAP's geographical coverage

Arctic Monitoring and Assessment Programme

AMAP Assessment - leads

POPs Canada & Sweden

Radionuclides Norway & Russia

Mercury Canada & Denmark

Oil Norway & USA

Human health Canada & Norway

AACA-C Norway & USA

Barents: Finland, Norway, Russia & Sweden

Berings.:Canada, Russia & USA

Baffin/Davis: Canada & Denmark/Greenland

Arctic Monitoring and Assessment Programme

AMAP Assessment - leads

Ocean Acidification: Norway & USA

SLCF: BC & Ozone: Norway & USA

Methane: Canada & USA

Land ice: Canada, Denmark/Greenland,

Russia & USA

Sea ice Canada, Norway & USA

Permafrost: Russia & USA

Snow: Canada

Arctic Freshwater Bugdet: Canada

Arctic Monitoring and Assessment Programme

AMAP Thematic Data Centres

Atmospheric
 NILU, Norway

•Marine ICES, Denmark

•Terrestrial & Freshwater UAF, USA

•Radioactivity NRC, Norway

•Human National

Provide access to data from recent monitoring and research

•Ensure that data are treated in a consistent manner, QA/QC

• Provide long-term secured archive of Arctic-relevant environmental data for use in future research and assessments.

AMAP Project Directory (www.amap.no)

•Who's doing What, Where, Methods and Data reporting!

Evaluating specific episodes: PCBs at Ny-Ålesund Arctic Monitoring and Assessment Programme

View from the station on a clear day...

And during the 2nd episode in May, 2006

http://www.amap.no

Evaluating specific episodes, e.g. PCBs at Ny-Ålesund

Arctic Monitoring and Assessment Programme Global emissions of mercury 1990 - 2005 (AMAP 2011)

Arctic Monitoring and Assessment Programme

Mercury cycle in the Arctic

Combined effects, climate and Contaminants, AMAP 2012.

Snow, Water, Ice and Permafrost in the Arctic (SWIPA)

For scientists ... decision-makers/public

... policy-makers ... educational use

... 3 films in 10 languages

www.amap.no/swipa and www.vimeo.com/groups/swipa

Key Findings: Arctic Ocean Acidification

Key finding 1
Arctic marine waters are experiencing widespread and rapid ocean acidification

Key finding 2
The primary driver of ocean
acidification is uptake of carbon
dioxide emitted to the atmosphere
by human activities

Key finding 3
The Arctic Ocean is especially

vulnerable to ocean acidification

Key finding 4
Acidification is **not uniform** across the Arctic Ocean

рН	H+ (moles per liter)	change in acidity
7.2	6.3 x 10 ⁻⁸	+900%
7.3	5.0 x 10 ⁻⁸	+694%
7.4	4.0 x 10 ⁻⁸	+531%
7.5	3.2 x 10 ⁻⁸	+401%
7.6	2.5 x 10 ⁻⁸	+298%
7.7	2.0 x 10 ⁻⁸	+216%
7.8	1.6 x 10⁻8	+151%
7.9	1.3 x 10 ⁻⁸ 🔨	+100%
8.0	1.0 x 10 ⁻⁸ €	+58%
8.1	7.9 x 10 ⁻⁹ 🥋	+26%
8.2	6.3 x 10 ⁻⁹ ✓	

Average global surface ocean pH has fallen from a pre-industrial value of 8.21 to 8.10, corresponding to an increase in acidity of 28.8%. Values of 7.8–7.9 are expected by 2100, representing a 100–150% increase in acidity (NOAA/PMEL)

Arctic Monitoring and Assessment Programme

Climate Change - Combined Effects

Consequences of change?

Challenges

Arctic residents **Losers?**

The global community

Winners?

(multinational industry)

Opportunities

Better access to resources -

- oil and gas, -
- mines,
- fish?

new shippig routes

Arctic Monitoring and Assessment Programme

From Science to Policy:

- Radioactivity reduced risk
- Food advice to Arctic peoples
- UNECE Århus protocol (1998)
- UNEP Stockholm Convention on POPs (2001)
- UN FCCC COP & IPCC (2004 2014)
- UNEP Global Mercury Minimata agreement (signed 2013)

Arctic Monitoring and Assessment Programme

From Knowledge to Action - a long road

Substance to Market 2-5 y
Substance to Problem 5-10 y
Market to Problem 10-20 y

Problem to Regulation 20-30 y Regulation to Effect 5-10 y

Ramon Guardans 2010